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SECTION I
Introduction

The kernel used in integral equations can often represent the analyst’s

greatest difficulty. In electromagnetics, it contains a singularity over

• which an integration must be performed , and as a result, extreme care must be

• 
. 

exercised in performing the integration.

In this report, the defining integral equation in terms of electric field

for problems involving conductors is

x ~iflC(~) — 
1 a x 5 J(r ’) . (V’V’ + k2~ ) g (r ,r ’) d2r’ (rEs). (1)

Thus, for a cylinder of radius a with azimuthally symmetric excitation that is

axially aligned (i), one must have

E~
’
~~(z) = — 

~~~~ 5 (I(z ’) 
~~~~~~~~~~~ 

+ k~
] 
~~~ g (r,~~’) d

2
r’ (z€ s), (2)

with the azimuthally directed component of current density existing only as

the solution of a homogeneous equation. In this expression, k 27T/A , i.e.,

the wavenumber in the ambient medium. Hence, for a circular cylinder,

E~
flC(Z) = - dz ’ I(z ’) 

(~~~
2 + k2) 

_
~~j d ~ g(z,z’ ~~~~~~~~

‘) (zcc) , (3)

with

_jkv4~_zt)
2+4a2sin2~ h/2

g(z,z’, ~ = 0,~~
’) = 

e 
_________________ . ( 4 )

/~~~zI)
2+4a2sin2~~/2

Equation (3) with Eq. (4) is an exact representation in this case, as

there are no approximations involved in the derivation , and, hence , there

are no restrictions on any parameters in the problem.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~•. -
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In this report , we define the kernel of Eq. (3) to be

• 2r r
G(z ,z’) 

~~ d4’ g(z ,z ’ , 4 —  0,4’) d4’, (5)
8ir 0

that is, a term proportional to the azimuthal integral of the free—space

Green’s function. There is a great deal of interest in not only the

approximations of the kernel G(z,z’) but also in the value of the double

integral in Eq. (3). However, the integral

dz ’ 1(z’) 
(~~~

2 + k2) G(z,z’) (6)

has an analytical solution in terms of values at the end of the range of

integration in z’ when 1(z ’) is of sinusoidal (sin kz’ or cos kz’) form.1

Therefore, we initially restrict our attention to the evaluation of the

integrals in Eq. (3)  for the case where 1(z ’) is a constan t this gives rise
to nonanalytically integrable integrands. We are interested in the value of

Q(z) , i.e.,

2~r
Q(z )  = dz ’ —i f d4’ g(z,z’, 4 = 0,4’). (7)

- .ki. 8ir 0

Because the major difficulties in the evaluation of Q ( z )  occur when the
singularity in g(z,z’, 4, 4’) is in the range [ct ,~ ], we focus most closely on

this range . However , difficult ies have also been observed when the

singularity is outside , but close to , this range . We comment on this

difficulty where appropriate .
Two basic options exist in the evaluation of Q(z). Specifically , they

involve the order i.~ which the 4’ and z’ integrations in Eq. (7) are performed.

H In this report , we will deal with three different approaches to the evaluation ,

two of which evaluate the integrals in the order indicated in Eq. (7).

Alternatives also exist regarding the manner in which g(z, z’, 
~~, 

4 ’ )  is

written . One of the basic goals of this report is the definition of some
forms for Q(z) that satisfy certain accuracy requirements over ranges of the

2

~~~~~ 
_______  _________________  __________  _____ _ _  - -~~~~~~ ••--- -~~~~ - - - - --~~~~ •- - ~~~~~~~~~~~~~~ _



variables ct/A, B/A , and the radius of the cylinder normalized to wavelength

(a/A). It is evident, both in the derivations and the numerical computations,

that the particular representations used for g(z, z’, 4, 4’) can affect the

ultimate accuracy in Q(z).

Fc: purposes of comparison, we derive three distinct approaches that lead

• to three different forms of Q(z). Naturally, each approach includes several

= different results, each of which is the outcome of retaining higher—order

- 

terms in series representations. Also, because the values of G(z,z’) and

are needed in certain cases, these functions are considered when

appropriate. For certain approximations, the results of numerical computations

are analyzed and the attendant errors studied.
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SECTION II
Representations for Q(z)

THE CLASSICAL APPROACH

The classical approach has been the most widely used and was one of the

first introduced in the study of the kernel of the integral equations with

— which we are concerned. The essence of the method is described in Schelkunoff

and Friis,
2 and is explicitly carried out to various orders of approximation

in Poggio and Mayes.3 In the latter work, g (z , z’, 4, 4 ’ )  as given by Eq. (4),

is written in the form

-jkR1 l — e
g(z,z 

~~~~~~~ 
— — 

R 
(8)

with

= /~
2 i 2 

~~ + (z—z ’) 2

Attention is then focussed on the evaluation of the kernel

2ir
G(z,z’) ••

~j f d4 ’ g(z , z ’ ,4 = 0,4’). (9)
8r JO

S

when the last term in Eq. (8) is expanded in a Maclaurin series about kR = 0.

A derivation and comparison of the various approximations to G(z,z’) are

provided in Appendix A and are given in Table 1.

• 1J. A. Stratton , Electromagnetic Theory, (McGraw Hill, New York, 1941).
- 

• A. Schelkunoff and H. T. Friis, Antenna Theory and Practice, (John Wiley
and Sons, Inc., New York, 1952).

3A . J. Poggio , and P. E. Mayes, Numerical Solution of Integral Equations of . - 
-

Dipole and Slot Antennas Including Ac tive and Passive Loading, Air Force
Avionics Laboratory Rept., Wright—Patterson Air Force Base, Ohio (1969).

4
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Table 1. Approximations to the kernel.

= 

81r~a 
[2k 1K k 1 

- 4~
2 
a/A] = 

/ 2 
2a 

2
4a +(z—z )

G 2 
= 

8I12a 
(2k1 I z-z ’l - j 47~2 a/A)

= 

~ç (2 Zn 
j z—z ’ j  — ~j ~~~ a/A)

Gb 
= 

8~
2a [

2kl K(k 1
) - 

i 4~
2 a/A - io~

2 
2 ]

G = 

~~~~ [~~ l K(k 1) - 
i 4~

2 a/A - k1 
(a/ A) 2E (k 1

) - j  ~~~~ (a/A ) 3

+j~~ii
4 (a/X) 3~

G = —
~~

-— 2~ 

ka 
~~~~~~~~ 

2

d 87r2a .~Ji + 
(z;z I)2

I . z-z ’, —jk a —I
G ~~ 

( 2 f f
C 

a

e 8712a 19H

1 
2Tr 

e
_jk5

~~~~~~~
2 
~~ 

+ 
(

t)
2

G 
~~~~~~~~~~~~~~~~~~~~~ 

d4s ’

•

~~ ~~~~~~~~~~~~~~~~ 
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~~~~~~~~~~ 
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~~
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Using any of these approximations, one is still faced with the z’ integral

indicated in Eq. (7). The first three representations, G
1
, G 2, and G 3

,

are independent of a/A and the first term in the approximation of G(z,z’) for

z z’ represents a static interaction. These three approximations derive

from the decomposition of 4(z,z’, 4 = 0,4’), in the form given in Eq. (8),

with the retention of only the first term of the MacLaurin series in the
-jkR(1 — e )/R term. The 1/R term yields an exact form , namely , an elliptic

integral , while the second term is 0(1/A ) . The representations are written in

- 

- 

an ascending series in l/X ~~.

AN ALTERNATIVE APPROACH

The foundation for the derivation of an alternative representation of
Q(z) for small (z—z’) has been provided by Tesche.4 The approach consists .‘f
first evaluating the z’ integral in Eq. (7) and then performing the 4’
integration.

In this representation ,

27r
Q( z) = —s- f d4 ’ P(z ,4 ’) ,  ( 10)

8r 0

• where

B
• P(z,9’) = f dz ’ g(z,z’,4 = O ,~~’) .  ( 11)

The derivation, detailed in Appendix B, requires an expansion of g(z,z’, 4, ~t
’)

about kR = 0 and yields, for P(z,4’),

P(z,4’) = - 
~~~~ m 

1

z-B 
d~~~ a2 sin 2 

~~ + 
~2)

2 
(12)

m 0  tfl~ z-ct

• The case where the singularity is at the center of the range in ~ is of

particular interest because , in a collocation solution of the integral

• equation , the obs ervation points are usually placed at the center of the

4

F.  M. Tesehe , Evaluation of the Surface  Integral  Occurring in the E — f i e l d
Integ ral Equations for  Thin—Wire  Antennas , Air Force Weapons Laboratory ,

iL~, 
Kir t lan~~~~~~~~orce  Base , New Mexico , Math emat ics  Note 29 ( 1973 ) .  

- —
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intervals. For this case, ct = z — 1V2 and B = z + ~/2 , and the results for

Q(z) are somewhat simplified . We include below a tabulation of the representa—

tions of Q(z), denoting them Q
m
(Z) to indicate the order of the terms retained

in the derivation. Details are in Appendix B.

- 

- Q1
(z) = + Zn 2 + ~ f/2 d~ Zn [~~ + ~~~in

2 
~ + (~)i 

- (13)

= + 
Zn2 

- 
(ka) 21 + ~~~~~ (ka)~ - ~~~ (k~ ) ( ka)~~~~ + 

(
~~

)

2

(14)

E~

j 
÷

l

(
~~~2]+ 

~~ j  d~)( l—k 2a2 sin 2
~ ) Zn[~~ + V~in 2

~ (
~~

)

2]

Q (z) = ~~~~ (1 - - 
~~ 

+ ~~~~~~ (1 - 
k
2
a2)

(ka)~ -
~~~~~~~~~~ (:) (ka)~~~~~~~ (A)

:(  1 )

+.4 f~
2 

d~P ( l - k2a2 sin 2
~ ) Zn + \VL c +  ~~~~2j (15)

Note that Q1
(z) is independent of ka but dependent on ki~ and the ratio is/a;

that Q2
(z) has terms of order ka and (ka)

2; and that the integrand in Q3(z) is

only slightly more complicated than that in Q1
(z). Furthermore, all the

integrands are nonsingular and can be evaluated numerically with ease.

- - - - -—-—-— -- --- ~~-—---~~~_-~-• •--•-— - -~~~~— - - -~~~~~~ ----—
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AN EXTENDED , THIN-WIRE KERNEL

Deficiencies have been obse rved in the thin—wire kernel, as illustrated

in Appendix A. There, the thin—wire kernel given by

/ 2~~~
~~~~ 

1(z—z ’) +a
G(z ,z ’) = __________ (16)

4ir /(z_z~ ) 2+a2

is not a suitable representation of the exact G(z,z ’) of Eqs. (4) and (5) for
small values of j z—z ’ I/a .

In our investigation of representations of G(z,z’) or Q(z) , we rederived

and extended the thin—wire kernel. An integral representation of the function

= 0 ,4 ’) is available in the forts5 
-

e
_
~

k
~~~~

_ ) 2
~~

2 
= 

~~ f dv ~ j V J Z _ Z ’ l  H~
2
~ (~~~~~~ 2)  , (17)

Vc~~~) +p

where

p ’ 2a sin~~ — .2

The corresponding integral form for G(z,z’), with an interchange in the order

of integration, is therefore

G(z,z’) = 
1
2 f dv e

jVIZ_Z ’I 
j

2~ 
d4’ H~

2
~ (2a sin 

~~ 
- (18)

-ç  

l6ir j —~~ 0 °

The 4 ’ integral has a well—known result so that

G(z,z’) - f dv e~~~~~~~ j(a~~~~~
2) H(2)(a~~~~~2) . (19)

~1. S. Gradshteyn and I. M. Ryzhik, tables of 
Integrals, Series, and

Products (Academic Press, New York , 1965). —

P-5
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This approach to obtain the exact integral representation of G(z,z ’) is
outlined in Hallen .6

The substitution of the series representation for the zeroeth—order Bessel

function , i.e.,

j ( avQ~~~) = E ( 1) i a (k2 —v 2 ) (20)
i=o 2 i!  F(i+l)

allows Eq. (19) to be written as

G(z ,z ’) = 
(~ l) a f  ~ ~ i~~ IZ~~Z I (k 2-v 2 )~ H~

2
~ (~~ k2 V 2 ) (21)

i=O 2 i! F(i+1) —
~~~

Furthe rmore , one can introduce the series representation

(k 2—v 2 ) = k 2
~ ~~ ( 1) Z 

Z!  (i-Z) ’ ~
2Z k 2Z 

(22)

and obtain

G(z,z ’) = 

~~~~~~~

- (_ 1) i 
2 2u i~~ r ( i +l) ~~~ 

( 1) i 
Z (i-Z) !

k
_ 2Z f dvv 2Z civ z I  H~

2
~ (a~~~~~ 2) . (23)

However , the v integral is nothing more than

(_1) Z f dv e
jv12_

~~ H0~
2
~ (a~~~~~) , (24)

6E . Hallen , Electromagnetic Theory (John ~Wi1ey and Sons, 1962).

9

•~ :• 
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and , using Eq. (17),

1 i ‘k ’ 2
~ 

I 22.
G(z ,z ’) — 

~~~~ ~~ 
(— 1) 2i 

a, 
Z ’ ( i— Z ~ ’ k

i—0 2 i! I’(i+l) 2.=O

~22. e jk~~~_z~ ) 2+a2 •

az 
4~z_z t ) 2+a2

This expression for G(z,z’) can be written in the compact form

G(z ,z ’) — _L E (_ 1) i 
(1 + 4 D~~ ~~~~~~ 

(26)

where

= 
e_jk/ ~~~~t ) 2

~~
2

thin ‘~~~~~ 2 2 - -

/ ( z—z ’) +a

and

• 2D - ~~~ .
- :

In Eq. (25) ,  the i = 0 term corresponds to the common , thin—wire , form

G0 (z , z ’) ~~ , (27)

while retaining the i 0 and i = 1 terms corresponds to the “extended”

thin—wire kernel

G1(z , z ’) - ~~ 
[1 

(ka) 2 (~ + 

~(kZ) 2)] ~~~~ 
. (28) 

~~~~~~~~~~~~~~---- - ~~
_
~~ _ .•_ _

~~
_ __ • __ ~

_ _1 — - - --~~ _ _ _ _ _
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Expanding the terms in G1(z ,z ’) yields

H G (z ,z ’) - 
e

_jk
~~~~~

’) 2
~~

2 

/1 - 
l+ikaL(~~:)

1 4ir 
V/’(z_z~ ) 2+a2 2 [l+~~~~~~~

j

+ 

~~ [~+(~‘)~}~ ~ 

3jk a~~l+(~~~ 
~
)

2 
+ ~ - k2a2 

[l+ (~~~ ’) 2] j ) (29)

-
• The extended thin—wire kernel derived above does not exh ibit the

appropriate singularity at z = z ’ and , hence, cannot be expected to yield

suitably accurate results for Q(z) near that point. We can expect however ,

that its range of validity will exceed that pertaining to the thin—wire kernel.

THE SMALL DISTANCE LIMIT OF THE THIN—WIR E FORM

The thin—wire form for G(z,z’) was derived in the previous section. We

now consider an approximation to Q(z) that is obtained by expanding the

exponential in a Maclaurin series. This approach is presented by Harrington
7

and used for comparison by Tesche.4

We are interested in the approximation
L .

~ 
-jkv~~-z ’) 2+a2

Q4 (z) = 
~ 

dz ’ 
~~~~~~~~ J d4 ’ e 

. 
- (30)

Jct 8-rr 0 /~~~~, 2 2
v ( z—z ) +a

Using the Maclaurin series, one obtains the integral

• Q4 (z) = f dz ’ 

[
~~~~~~)

2 2  
- 

Jk] 
(31)

7 R. F. Ha rrington , Field Comp u t a t i o n  by Moment Methods (MacMillan , 1968).

11
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which can be evaluated to yield -

Q
4

(z)  - Zn Z-Q + ~4~~~ ) 2 
+ a 2 

- jk (B-s ) - (32)

z—B v’~~ j 32 a2

For B — z + ~/2 , ct = z — ~/2 , and ~ > > a ,

H Q4 (z) _ *Zne-~~~~
jk
~ 

.

1
1

12
I
~
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• SECTLON III
A Numerical Compa rison of Various Kernels

To compare the various kernels or the functions Q(z), numerical computa-

tions are necessary. We performed these computations for selected representa—

tions and can therefore suggest forms that satisfy certain accuracy constraints.

In the numerical studies, we included the functions Q(z) shown below.

Table 2. The functions and their definitions .

Q(z) Eq. (7) and Eq. (4)(Exact)
Q0 (z) fdz ’ G 0 (z , z ’) Eq. ( 27)

Eq. (13)

Q2(z) Eq. (14)

Q3( z ) Eq. (15)

Q4
(z) Eq. (32)

~~~~~ fdz ’ G 1(z , z ’) Eq. ( 28)

The relative error is used as a criterion of accuracy in the study of the

representations and is defined as

Q — Q ~Relative Error = , (34)

where Q is the exact representation [Eqs. (7) and (4 ) 1  and Q. is the respective

approximation. Because the error is dependent on z , ct , 3, k, and a, we

restrict our attention to

• Self terms : a — z — ~/2 , B = z + ~/2

• Adj acent terms : a = z + ~/2 , B = z + 31~/2

• Next—to—adj acent
terms : ct z + 3 ~ /2 , $ z + 5 ~ /2 ,

with variations in wavenumber k and radius a. In this manner , the dependency

-
- 

- of Q on z is contained implicitly in the specific term we are considering and
• in the range (a ,31. Therefore , we have parameterized our curves with respect

• to the term considered and to ka, and have plotted the relative error versus

Li/a .

— 13
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RELATIVE ERRORS IN THE SELF TERMS

The relative errors in the evaluation of the self terms, Q(z) for a z —

A/2 and B — z + A/2 , have been calculated . The results are shown in Figs . 1
through 8: the relatLve errors are plotted vs A/a, kA , and N/A . The latter

abscissa is the number of intervals contained in one wavelength. Note that

kL~ — (ka)(A/a) and N/ A 2Tr/kA . In Figs. 1 through 5 there is a region

denoting error bounderies for certain representations. The relative error

curve for each representation oscillated within these boundaries-and the

detailed nature of the curves themselves did not convey any seemingly useful

Information.

The range of values of A/a shown in Figs . 1 and 2 do not in reality

correspond to the values likely to be encountered in practice. Because one

generally uses on the order of five to tens of intervals per wavelength ,

most of the representations will suffice. In fact, most will provide relative

errors less than 1% in the commonly used range of N/A .

For thicker wires, the relative accuracies begin to deteriorate.

Although the onset is seen in Fig. 3, it is more clearly seen in Figs. 4

through 8 where the relative errors over the indicated range of A/a are not

monotonic functions and often show a decreasing , and then an increasing ,

relative error as A/a decreases. The deficiency in Q4 is evident in Figs.
4 through 8. Furthermore, the relative inaccuracy in Q1, Q2, and Q3 is
seen to increase with increasing ka, and k.A (in general). Inspection of the

thin—wire representation also indicates a problem as its relative error

curves exhibit minima. However , the relative error in the extended thin—

wire representation is reasonably constant with respect to variations in

ka and the relative error is less than 1% for A/a > 2.

A careful study of Figs. 1 through 8 allows us to establish the set of

representations that will yield relative errors less than 1% over the ranges

l0
4 < k a< 0 .4 , and 0.01 < kA < 1.0 (Fig. 9). 
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RELATIVE ERRORS IN THE ADJACENT AND NEXT-TO—ADJACENT TERMS

The various representations used for Q(z) can yield errors even when

the interval of integration does not contain the singularity . Because the

representations Q1, Q2 . Q3, Q4 are for small displacements , this may not
be surprising. However , the user must be aware that difficulties can be

encountered . In Appendix A , we show that sizeable errors in adjacent terms

can arise by using the thin—wire kernel G0
(z,z’). We now investigate a

— 
similar occurrence in representations of Q(z). In this portion of the study

we include only those representations appearing in Fig. 9, i.e., ~0 ~e ’ ~~3

Figure 10 shows the range of relative errors induced by the various

approximations as a function of A/a with the parameter ka varying from lO~~
to io 2. The relative error is almost insensitive to the variation .

However , Figs. 11 through 15 show the relative errors for Q0 and Q3,
as well as the relative constancy of the relative error in 

~e 
as ka increases.

The results presented in Figs. 10 through 15 allow us to plot the range of
applicability for the various representations when evaluating the adjacent

terms (Fig. 16) . Finally, because we have considered the adjacent terms ,

it is appropriate to consider the next—to—adjacen t terms, -~~ = z + 3A /2 , and
= z + 5A/2 , Having performed a similar study as that preceding, we present

here only .the encapsulated result , namely, the plot t~~ the ranges of

applicability . Figure 17 depicts the ranges in the ka — kA space. It is

• 
- 

evident in this plot that the region is enlarged where the extended thin—wire

representation provides a relative error less than 1%. Naturally , the region

of validity for Q3 is shrinking because it is a small distance approximation .
The results of our investigation of the various representations of

Q(z) are summarized as follows:

• If A/a > 10.0, the thin—wire representation can be used everywhere .

• If A/a > 2.0, the extended thin—wire representation can b.~ used

- 
- everywhere.

• If A/a < 2.0, Q3 should be used for the self and adjacent terms and
for the next—to—adjacent if A/a < 1.0.

• For 1.0 < A/a  < 2.0 Q3 is used for the self and adjacent terms and
the extended thin—wire for the next-to—adjacent term .

18
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REPRESENTAT IONS FOR A SINUSOIDAL CURRENT DISTRIBUT ION

Several commonly used basis functions for conducting wires include

sinusoidal components. Hence, the linear current density in Eq. (3) is
written as

sin
1(z ’) — cos 1k( z 1

~~
zi ) ] .

However , the axially directed electric field of such a current distribution

can be simply written as1

~G 2E 1(z ’) —
, — -~~~~~ , C (35)z z z

Hence, it is seen that one requires for calculations only the values of

ç2l1

G(z ,z ’) = —s- j  d~ g(z,r~,4=0,q’) ( 36)
— 1’l 8-riP 0

and

~G(z , )  = ~ 
1

..271 
d~~’ ~~ r g(z,n,~~O ,~~’) , (37)

or, in expanded form,

G(z,z’) ~ 
j

~~/ 2  
d~ 

e (38)
r~ 27r 0 r

and 

3G(z , z ’) 

• 

1 
j

~ /2 
~~ jkr+1 ~~~ 

e~~~~ (39)

where
2 2 . 2r = ( z— r)  + 4a sin . .

23
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These integrals can be performed easily using a numerical scheme as

there is no singularity. Also , to circumvent the numerical integration ,

one can use_approximate forms. For instance, for large ~z 
— z ’ l , r —

vf~ .i)
2 +a 2

,

G(z ,z ’) ~~ ~~~~~ (40)

0.4 I I 1 I I I I j  I I l i l t

0. 1 - ~o/ -

7 

-

0 I
• / Thi n wi re  / -

/ extended /
- 

~~~~

l -

(z ,z I)  -

Thin wire

G0 (z ,z I) 

-

t i

0 0 1  I I I I  i I  I t i

-
~~~~ 0.01 0.1 1.0

kA

Fig. 18. Representations leading to kernel evaluation with less than
1% error.

- _
~I and

3G(z ,z ’) 
— 

1 j kr+l z~ n ~~~~~ - (41)
4’r~ r r r
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For small Iz  — z ’ I  the approximations in Append ix A can be used . Naturally , due

regard must be paid in both cases to the errors involved in these approximations.

Figure 18 shows the region for which the relative error realized in

approximating G(z—z1 = A/ 2) (Eq . (37) ] by the thin—wire and extended thin—

wire representations are less than lZ. A similar plot is provided in

- - 
- Fig. 19 for the derivative at the end of the interval.

It can be concluded that G(z,z’) as given by Eq. (36) can be evaluated

numerically for A/a < 4.0, by using the extended thin—wire version for A/a

.0, and the thin—wire version for A/a > 14.0. For the derivative term ,

these limits become A/a > 4.0 and 30.0, respectively.

0.4 
~ ~

- 0.1 — A/a 7.0
0 - -
-

~~ : A /o=3o G1
1 .

(Thin wire

0.01 
extended) 

I L

0 01 0 1 1 0 Fig. 19. Representations leading to
derivitive evaluation with
less than 1% error.

SECTION IV
Conclusions

The widely used thin—wire representation has been shown to be deficient ,

particularly when displacements from the singularity are small. Alternative

representations have been provided and regions of validity have been

delineated. Constant and sinusoidal representations for current have been

considered and the errors in evaluating self terms, adjacent terms and

next—to—adjacent terms have been evaluated. Using the results contained here,

a user can employ the form that is consistent with his accuracy requirements,

yet , in most cases, without having to numerically evaluate the integrals

containing singularities. -
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Appendix A. A Classical Approach to the Kernel Approximati on
Introduction

• An integro—differential equation for the current distribution 1(z) on

a cylindrical dipole antenna of length 2L and radius a with general but

azimuthally symmetric excitation E~ (z) ,  as given by Ref. 1, is

+ ‘(i) j
’

~ 
1(z’) G(z,z’,a) dz ’ = 

~~~~~~~~~ ~~~~~ (A—l)

where the kernel G(z,a’,a), because of the assumed symmetry, has the exact

representation

—4ka 2 ~,.2Tr e~~ \/4 sin ~~~~~~~~~~~
G(z ,z’,a) = ._-i__ 

J 

V 2 a 
dip ’. (a—2)

. 2 j~~ z—z 1
sin +

2 a

The characteristics of G(a,a’,a) near its singularity (ip ’ 0, z = z’) play

an important role in establishing the solution for 1(z). The solution of

Eq. (A—i) or alternative forms (e.g., Hallen’s integral equation) by approx-

imate numerical techniques, such as point matching (discretization and

collocation),8’9 requires (for efficiency) the knowledge of the valid

approximations to G(z z’,a) that do not require aI~’ integration . Also, the

-
- 

• ranges of validity of the approximations must be known and observed to ensure

accurate solutions . We derive here various representations and graphically

compare them to establish their respective regions of validity. An error
— 

- that arises when a particular approximation is used will be considered .

1- -

DERIVATION OF APPROXIMATIONS

The kernel. G(z,z’,a) can be written as the sum of two integrals:
1 
one

containing a phase—stationary , singular integrand , and the other , a regular

integrand :

G(z ,z’,a) - 
~~~ f 12

~~ ~~~ = 
1 - ~~~~ 

dYl

f 
8K K. Mei, IEEE Trans. Ant. and Propag. AP— ].3. 374 (1965).
9s. A. Schelkunoff , Advanced Antenna Theory (John Wiley and Sons, New York , 1952).
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where -

r =~
J
~~~~sin

2 

~r-~ 
(z-z.) 2

By performing a simple transformation and substituting a Maclaurin series

about kr — 0 for the exponential and integrating the terms to order k3r3 in

the integrand, the kernel can be written as

G(z,z’,a) = 
8ir2a 

[2kl
K(kl) - 2irjka - 4k2a2 E(k

1) 
-

~~ jk
3a3 + ~ jk

3a (z—z ’)2 + . . , (a-))

where

— 2a/ ~~~a
2 

+ (z-z ’) 2

and K(k
1
) and E(k

1) are complete elliptic integrals of the first and second

kind , respectively . Equation (A—3) is an exact expression for the kernel

when all the terms in the series are included . However, for ease of corn—

putation, we consider various approximations for the kernel for limited

ranges of the variable ~z—z ’I/a.

An approximation valid for kr << 1 results when the first two terms of

Eq. (A—3) are retained . This approximation, referred to as G 1, contains

the result of the first integral and the integral pertaining to a — 1 in

the Maclaurin series. A simplification of G
l can be realized by making

use of the first term of the series expansion for K(k1),
10 viz.,

- K(k
1
) — ln ~

1
l —

For a small I z_z II /a , we have 1 — k~ j z—z ’j/2a, so that a second

approximation is obtained :

Ga2 — 
1 2k1 ~n I z— z ’l 

— 2Irjka , (A-.4)
8rr a

10E. Jahnke and F. Emde, Tables of Functions (Dover Publications , New York,
1945).
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and because k1 1, a third approximation follows:

G 3 
~~~ 

{2 
2.n 

I z—z~F 
— 2Tr~ka} 

. (A—5)

Let 0
b 

be the kernel that results from keeping the first three terms of Eq.

(A—3), i.e., up to the a 2 term in the Maclaurin series. This approximation

can be written as

Gb 8~~a 
{2ki

K(k
1 

- 2~jka - 
4~~a E(k

1
) j - (A-6)

The approximations C l, G 2 , G 3, and Gb 
have been written for kr << 1. From

the definition of r, we see that this requires ka + (z—z ’/ a) 2 << 1. For

ka << 1, the inequality may be satisfied for quite large values of J z—z~~/a.

The kernel can also be approximated over the remainder of the range of

I z—z ’~~/a .  One such approximation, which is generally referred to as the

thin—wire kernel, is obtained by a physical approximation in which the source

point z’ is considered to be an the surface of the cylinder and the observation

point z to be on the axis of the cylinder , so that the approximate kernel

can be written as

1

____ 

_jka~~1 
+(z_z )

G = 
1 2~~e a (A—7)

8r r a  2d 2 

\
/1 ~

(z_z ”~
~ a /

Another approximation can be derived by letting z—z ’
~
/a >> 4 sin

2 
~‘/2 for

all ~~
‘ in Eq. (A—2) . Then,

/ z—z ’
, —jka

C ~~~,2 e a (A—8)
e 8ir2a ( z— z 1

This kernel is identical to the one that results from placing both source and

¶ observation points on the axis of the cylinder. It can also be derived from

Eq. (A—7) by requiring that z—z ’/aI >> 1.
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COMPARISON OF APPROXIMATIONS TO THE KEBNEL

The various approximations to the exact kernel G (normalized to 8rr2a) are

plotted as a function of normalized displacement in Figs. A—i and A—2. The

i
~~
’ integration indicated in Eq. (A—2) was performed numerically to establish

the regions in which the approximations most accurately represent the exact

kernel. The figures are for radius—to—wavelength ratios (aIX) of lO~~ and

io 2, respectively , and show the dependence of the regions of validity on

the dipole thickness.

Figures (A—i) and (A—2) show that a single approximation, adequate for

the entire range of I z—z ’IIa , does not exist. They also indicate that G
1
,

Gb, and G 3 
are excellent approximations for small values of the normalized

displacement I z ~z ’ I/ a .  It is also evident that the accuracy of the approxi-

mations, especially for the imaginary part , deteriorates as the ratio

12.0 I I I _ I I

-4
~~~ — Exact G a/X 10

10 .0 
~ e~~ \ 

- Imag inary part

‘ G 1, G 21G 3, 0

~~~° 8.0 
\

/
GbI G I GdI G ,G

-0.003948--~~ 
0

co
0• 0 \

~~~ 6.0 - -
,,--— -

,

~~~~~~-

t do . —‘- ... aa- ~~~~~~~~~~ \ .E— 
\ .~~~ \

~ 4.0 - Real part

~~~~~~~~~~~~~~~ 
G 1, Gb, 

~~~c2.0 - G 
2~~~~~~~~~

’a

- 

~~~~~~~~~~~~a3 .~~~ 
. . .0.0 I • I I I

0.04 0.1 1.0 10.0
Normalized dkplacement ((z—z ‘)/aI

Fig. A—l. A comparison of various approximations to the kernel for a, • = lO s’.
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a/A increases. Because it is necessary to use different approximations

over various ranges of I z—z ’I /a, one can, in view of the simplicity of the
expressions , choo se

8a2 2.n 
j z—z’J — 2-irika z—z I/a <0.3

2 k1K(k
1) 

— 2rjka I z—z ’I / a  <3.0

1G(z ,z ,a) = —y—

8ir a , 2

~~~~ 
\Jl+(z~~ )

2ii z—z ’l/a >3.0

The first entry is included because it has an analytically integrable

singularity at z = z’. The approximation G
e serves well for 

‘ z—z ’I/a >6.0.

The restriction on the radius—to—wavelength ratio should be observed when

establishing these regions of validity.

I 2.0 I I I I I  I I I 
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I I I  
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H 4.0 — G,Gali Ga2, Ga3l Gb,Gd,G <~~~~~
\Part 

~~~~~~~~~~~~~~~ — -0 .39
‘

~
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e 

G ~~~~ 
~~~ -; —0.41
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a2
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Normalized disp lacement [(z—z ”)/al

Fig. A—2. A comparison of various approximations to the kernel for a/\ = lO~~ .
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A CRITICISM OF THE THIN—WIRE KERNEL

Although the thin—wire kernel Gd has generally been used over the entire

range, this approximation suffices only for I z— z ’! /a <3.0. For normalized

distances less than 3.0, this kernel is clearly deficient because its real part

does not exhibit the proper singularity. However, because we are generally

concerned with its integral rather than its functional value, the thin—wire

kernel can be used over a wider range than Figs. A—i and A—2 indicate.

It is interesting to consider the relative error that arises when the

thin—wire kernel is used in evaluating the integral on the right hand side for

= z3 . Figure A—3 plots the relative error given by

z.+A /2

J C (z ,z’,a)dz’ — I G(z.,z’,a)dz’
d 

~ )z
1
—A /2 ~

= 
z.+A/2

G(z.,z’,a)dz’
- z —A /2 ~

vs the normalized interval half—length 50 0  • - -

A/2a. Also plotted is the relative -...~~1 — a/X=l0~~ 
-

error £2 for evaluating the integra— ~~
s.<~

.a/x 10

tion over the adjacent interval,
0 10.0

i _ i The relative error in the diagonal 1.0 
1

and first—off diagonal elements can 0•1 - 1.0
A/2a

be unacceptably large for small

intervals (A/a<2.0) . The £2 
is not a

Fig. A—3. Relative errors (~ l and ~2)monotonically decreasing function, resulting from the use ~ f
but rather suffers a sharp minimum ~he thin—wire kernel.

when the interval contains the

crossover of Gd and G at I z_z t I /a ZO.4.
The relative errors (c

1 
and £2

) can be

reduced by increasing the interval f -
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length. For intervals on the order of six radii (A/a~6.O), the relative errors

are less than 2Z.

- 
- 

CONCLUSION S

Various approximations for the exact kernel C have been compared and a

deficiency in the thin—wire kernel pointed out. A consideration of the errors

involved in the integral of the kernel leads to the conclusion that the thin—

wire kernel should be used only for sufficiently large intervals (A/a~6.O). A

matrix solution of the integral equation for the dipole -using Gd 
might not

converge as the number of segments N increases indefinitely, but rather might

begin to diverge beyond a certain number N0
. To increase the number of

segments, other approximations for the kernel near the singularity must be

used .

~~
-

33

_ 
----



Appendix B. An Alternative Approach to the Kernel Approximation

An alternate representation has been provided by Tesche.7 There, Q(z) is

written as

Q(z) = d~ ’ P(z,~~’), (B-l)

where

P(z ,~~’) = dz ’ g(z,z’,~ = O ,~~’),

Expanding on his derivation, with R \j~~
2 
sin

2 
~~~

— + (z—z ’) 2 , we obtain

P(z ,~~’) = - 

~~~~~~~ 

~~~~~~~~~~~~~ 

~~~~ 

d~~(4a~ sin
2’
~~ + 

~2)
2

(z— )~ + 14a2 sin
2 -

~~~~~ + (z—B)
2

— — 2~n ____________________ — jk(~—a)

(z—c ~) + ‘14a2 sin2 
~~~

— + (z—ct)2

• 

.

, 

— ~ (jk)m f  d~ R
m l  

. (B—2)
m 2  z—c*

‘:1
The first two terms are independent of ‘~a, as in the previous form , and the

first term is static. Tesche uses these two terms in his approximate

representation , in which he sets o. z — A/ 2 and $ = z + A/2, and obtains

P(z ,~~’) = -j1~ 
- 2 ~n + ~~sin

2 
~~ + (

~~~2] 
- 2 Zn [sin. ~~~ . (B-3)
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Hence, the first—order approximation to Q(z) becomes

= + ~~~~
- Ln 2 + 1 

1

2ir 
d~ ’ ~n + ~~~~~ ~~ + 

~~~
2] , (B-4)

which is again, as expected , independent of ka but dependent on kA.

Let us now write Q(z) with higher—order terms included , i.e.,

~~2 2~~ ’ 2
- 1 

2Tr (z—~) + ~‘4a sin — + (z— ~)
Q(z) = —j k  -

~
- - —i 

f 
d~ ’ ~n 

2

8ff 0 (z—a) + v”4a 2 sin 2 
~~~

— + (z—ct ) 2

- 

~~2 

(_~~~m 

~~~ f 
d~ ’ 

f 
d~ R

m_l 
- (B-5)

Thus, including terms up to order pertaining to m = 2, we obtain a second—

order approximation

Q2(z) = -jk - 

~~~ f 
d~ ’ [1 - k

2
a
2 sin

2 

~~
1zn 

2a~~ 
~~~~~~~~~~~~~~

8ir 0

- ~ 
[
~
2
~z_~~a Jsin

2 
~~ + 

(
~~~
)

2 
- k

2
(z-~)a Jsin

2 
~~ + ()2]} ~

(B-6)

which has terms of o rder ka and (ka) 2 .

For G. • z — 
~/2 and 3 = z + i~/2, we have

Q2
(z) = - 

~~~ 
f d ~ [1 - k

2
a
2 
sin

2
~ ] ~n 

- + + (\)
2

- -  2i 0 
j~

— + ~~~ +

+ (kL) (ka) Jsin
2w + . (B-7)
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The last term can be analytically integrated :
5

f/ 2  
~~ / .

2~ + (
~~

)

2 
= + (

~~
)

2 

E (
~/2~ 

j i  + (
~~

)
2) 

(B-8)

where E (r r / 2 ,k’) is an elliptic integral of the second kind , so that

Q2
(z) = - 

~~~~~~~~ 
(ka) + (

~~~2 

E( 
~ 

2
(B-9)

+ ~ J 12 
d~ [i - k2a2 sin2,~1 { ~

n + + ~~~~~ - Zn sin~
}.

It is well known that

f 
Zn (sin~) d~ = — ii]2 Zn2

0

and that

rr / 2

f 
sin

2’p Zn (sin1~) d~i = ~~~ (1 — 2 Zn 2).
0

Then, we have

4~ 
+ 

~~~ 
- 
(ka)2} + ~~~~ (ka)

2 
- (k~ ) (ka) Ji+ 

(
~
)

2 

E( ~~

2 ~~~~~~~~~~~~~
+ -

~~~
- ( dt~ (1 — k a2 

sin .) 2.n + , sin ~ + +~o(kR).

( B— b )
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We now introduce the m — 3 term in Eq. (B—2) , which can be written as

13 
= ~~~~~ ~~~~~ 

f 
d~ ’ 

f 
d~ (4a

2 
sin2 ~~ + ~2) — 

~~~~~~~~~~ 
~~~~~~ + , (B—il)

so that

(z) = - i~
__

~~
•__ 

- i~—~1 + &!~a 11 - k2a2

4r 3 7 2 j  2 1 1  2

+ ~j - (ka) 2 
— —

~~~~~ (kb) (ka) + (~) E 
-, 

2

+ 
1 

J/2 
d~ (1 

- k2a2 sin 2
~ ) Zn + /sin

2
~ + 

~~~~ 

] 
(B-i2)

This expression should be more than adequate for most self—term evaluations .

The required integral is only slightly more complicated than that given by

Q1
(z).
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